Lecture 9

Poles, Zeros & Filters (Lathi 4.10)

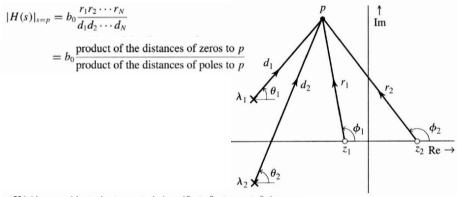
Peter Cheuna Department of Electrical & Electronic Engineering Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2 signals E-mail: p.cheung@imperial.ac.uk

PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 1

Effects of Poles & Zeros on Frequency Response (2)

• Therefore the magnitude and phase at s = p are given by:



 $(H(s))|_{s=p} = (\phi_1 + \phi_2 + \dots + \phi_N) - (\theta_1 + \theta_2 + \dots + \theta_N)$ = sum of zero angles to p - sum of pole angles to p

L4.10 p447

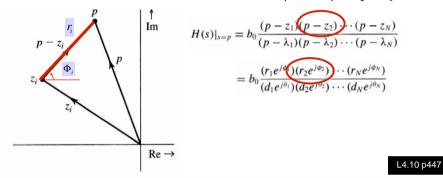
Effects of Poles & Zeros on Frequency Response (1)

• Consider a general system transfer function:

zeros at $z_1, z_2, ..., z_N$

$$H(s) = \frac{P(s)}{Q(s)} = b_0 \frac{(s - z_1)(s - z_2) \cdots (s - z_N)}{(s - \lambda_1)(s - \lambda_2) \cdots (s - \lambda_N)}$$
Poles at $\lambda 1, \lambda 2 \dots$

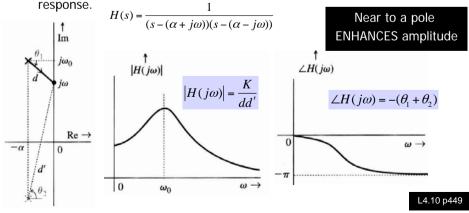
• The value of the transfer function at some complex frequency s = p is:



PYKC 8-Feb-11 E2.5 Signals & Linear Systems

Effects of Poles & Zeros on Frequency Response (3)

- Frequency Response of a system is obtained by evaluating H(s) along the y-axis (i.e. taking all value of $s=j\omega$).
- Consider the effect of two complex system poles on the frequency response.

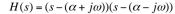


PYKC 8-Feb-11 E2.5 Signals & Linear Systems

Lecture 9 Slide 2

Effects of Poles & Zeros on Frequency Response (4)

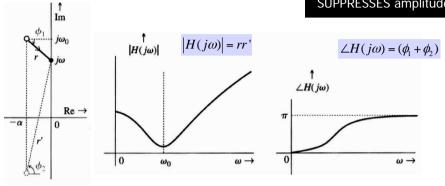
 Consider the effect of two complex system zeros on the frequency response.



PYKC 8-Feb-11

Near to a zero SUPPRESSES amplitude

Lecture 9 Slide 5

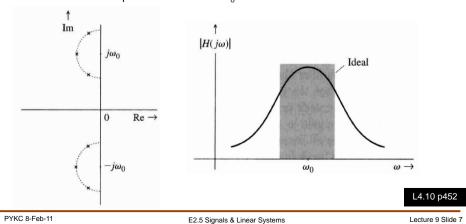


L4.10 p449

Poles & Band-pass Filter

E2.5 Signals & Linear Systems

- Band-pass filter has gain enhanced over the entire passband, but suppressed elsewhere.
- For a passband centred around ω_0 , we need lots of poles opposite the imaginary axis in front of the passband centre at ω_0 .

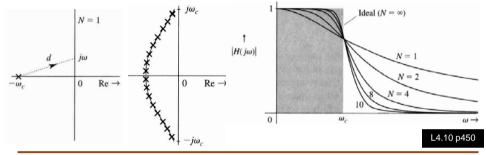


Poles & Low-pass Filters

- Use the enhancement and suppression properties of poles & zeros to design filters.
- Low-pass filter (LPF) has maximum gain at ω =0, and the gain decreases with ω .
- Simplest LPF has a single pole on real axis, say at $(s=-\omega_c)$. Then

$$H(s) = \frac{\omega_c}{s + \omega_c}$$
 and $|H(j\omega)| = \frac{\omega_c}{d}$

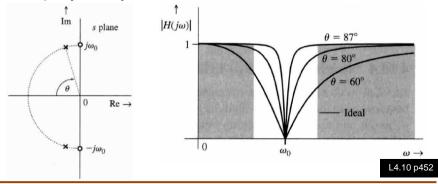
 To have a "brickwall" type of LPF (i.e. very sharp cut-off), we need a WALL OF POLE as shown, the more poles we get, the sharper the cut-off.



PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 6

Notch Filter

- Notch filter could in theory be realised with two zeros placed at ±jω₀. However, such a filter would not have unity gain at zero frequency, and the notch will not be sharp.
- To obtain a good notch filter, put two poles close the two zeros on the semicircle as shown. Since the both pole/zero pair are equal-distance to the origin, the gain at zero frequency is exactly one. Same for $\omega = \pm \infty$.

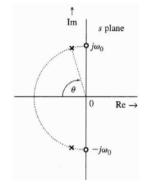


PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 8

Notch Filter Example

- Design a second-order notch filter to suppress 60 Hz hum in a radio receiver.
- Make $\omega_0 = 120\pi$. Place zeros are at $s = \pm j\omega_0$, and poles at $-\omega_0 \cos\theta \pm j\omega_0 \sin\theta$.
- We get:

$$H(s) = \frac{(s - j\omega_0)(s + j\omega_0)}{(s + \omega_0 \cos \theta + j\omega_0 \sin \theta)(s + \omega_0 \cos \theta - j\omega_0 \sin \theta)}$$



 $= \frac{s^2 + \omega_0^2}{s^2 + (2\omega_0 \cos \theta)s + \omega_0^2} = \frac{s^2 + 142122.3}{s^2 + (753.98 \cos \theta)s + 142122.3}$

L4.10 p453

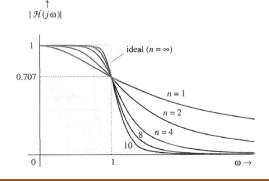
PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 9

Butterworth Filters (1)

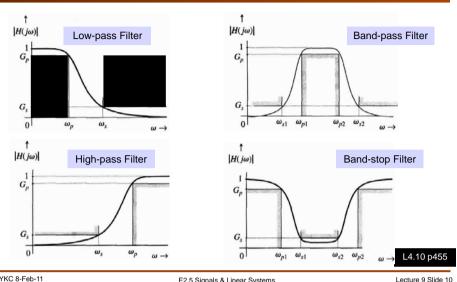
• Let us consider a normalised low-pass filter (i.e. one that has a cut-off frequency at 1) with an amplitude characteristic given by the equation:

$$|\mathcal{H}(j\omega)| = \frac{1}{\sqrt{1 + \omega^{2n}}}$$

♦ As $n \rightarrow \infty$, this gives a ideal LPF response: gain=1 if ω≤1, gain=0 if ω>1.



Practical Filter Specification



PYKC 8-Feb-11 E2.5 Signals & Linear Systems

Butterworth Filters (2)

- Substitute s=j ω in the equation $|\mathcal{H}(j\omega)| = \frac{1}{\sqrt{1+\omega^{2n}}}$
- we get: $\mathcal{H}(s)\mathcal{H}(-s) = \frac{1}{1 + (s/j)^{2n}}$
- Therefore the poles of $\mathcal{H}(s)\mathcal{H}(-s)$ are given by:

$$1 + (s/j)^{2n} = 0 \implies s^{2n} = -1 \times (j)^{2n}$$

• Now, we use the fact that $-1 = e^{j\pi(2k-1)}$ and $j = e^{j\pi/2}$ to obtain

$$s^{2n} = e^{j\pi(2k-1+n)} \qquad k \text{ integer}$$

• Therefore the poles of $\mathcal{H}(s)\mathcal{H}(-s)$ line in unity circle at:

$$s_k = e^{\frac{j\pi}{2n}(2k+n-1)}$$
 $k = 1, 2, 3, \dots, 2n$

PYKC 8-Feb-11 PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 11 E2.5 Signals & Linear Systems Lecture 9 Slide 12

Butterworth Filters (3)

• We are only interested in H(s), not H(-s). Therefore the poles of the low-pass filter are those lying on the Left-Hand Plane (LHP) only, i.e.

$$s_k = e^{\frac{j\pi}{2n}(2k+n-1)}$$

$$= \cos\frac{\pi}{2n}(2k+n-1) + j\sin\frac{\pi}{2n}(2k+n-1) \qquad k = 1, 2, 3, \dots, n$$

• The transfer function of this filter is:

$$\mathcal{H}(s) = \frac{1}{(s-s_1)(s-s_2)\cdots(s-s_n)}$$

This is a class of filter known as Butterworth filters.

PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 13

Butterworth Filters (5)

- Consider a fourth-order Butterworth filter (i.e. n=4).
- The poles are at angles $5\pi/8$, $7\pi/8$, $9\pi/8$ amd $11\pi/8$.
- Therefore, the pole locations are: $-0.3827 \pm i0.9239$, $-0.9239 \pm i0.3827$.
- Therefore:

$$\mathcal{H}(s) = \frac{1}{(s^2 + 0.7654s + 1)(s^2 + 1.8478s + 1)}$$
$$= \frac{1}{s^4 + 2.6131s^3 + 3.4142s^2 + 2.6131s + 1}$$

Coefficients of Butterworth Polynomial $B_n(s) = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + 1$

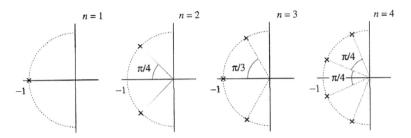
n	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9
2	1.41421356								
3	2.00000000	2.00000000							
4	2.61312593	3.41421356	2.61312593						
5	3.23606798	5.23606798	5.23606798	3.23606798					
6	3.86370331	7.46410162	9.14162017	7.46410162	3.86370331				
7	4.49395921	10.09783468	14.59179389	14.59179389	10.09783468	4.49395921			
8	5.12583090	13.13707118	21.84615097	25.68835593	21.84615097	13.13707118	5.12583090		
9	5.75877048	16.58171874	31.16343748	41.98638573	41.98638573	31.16343748	16.58171874	5.75877048	
10	6.39245322	20.43172909	42.80206107	64.88239627	74.23342926	64.88239627	42.80206107	20.43172909	6.39245322

Butterworth Filters (4)

 Butterworth filters are a family of filters with poles distributed evenly around the Left-Hand Plane (LHP) unit circle, such that the poles are given by:

$$s_k = e^{\frac{j\pi}{2n}(2k+n-1)}$$
 where $k = 1, 2, 3, ..., n$ (assume $\omega_c = 1$)

 \bullet Here are the pole locations for Butterworth filters for orders n = 1 to 4.



PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 14

Frequency Scaling

- So far we have consider only normalized Butterworth filters with 3dB bandwidth ω_c =1.
- We can design filters for any other cut-off frequency by substituting s by s/ ω_c.
- For example, the transfer function for a second-order Butterworth filter for ω_c =100 is given by:

$$H(s) = \frac{1}{\left(\frac{s}{100}\right)^2 + \sqrt{2}\left(\frac{s}{100}\right) + 1}$$
$$= \frac{1}{s^2 + 100\sqrt{2}s + 10^4}$$

PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 15 PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 16

Relating this lecture to other courses

- ◆ You will learn about poles and zeros in your 2nd year control course. The emphasis here is to provide you with intuitive understanding of their effects on frequency response.
- ◆ You have done Butterworth filters in your 2nd year analogue circuits course. Here you learn where the Butterworth filter equation comes from.
- ◆ Some of you will be implementing the notch filter in your 3rd year on realtime digital signal processor (depending on options you take), and others will learn more about filter design in your 3rd and 4th year.

PYKC 8-Feb-11 E2.5 Signals & Linear Systems Lecture 9 Slide 17